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This paper presents a new test for discerning whether or not two independent time series have the same
dynamics. Several methods in the time and spectral domain have previously been devised to conduct such
a test. Here, we explore a new approach to the problem by comparing sample arc lengths (ALs) of the two
series. Because sample ALs are derived from first-order differences in the series, the proposed methods work
for both stationary autoregressive moving average and non-stationary autoregressive integrated moving
average processes. This robustness is advantageous when one is unsure about unit root properties in the
underlying series.
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1. Introduction

In time series analysis, we seek to understand and model the evolution of a variable over time.
We typically focus on the first- and second-order properties of the sequence. The autocovariance
structure of a stationary time series gives an insight into the series behaviour. If two series are
known to have the same structure, then autocovariances of one series can be used as a surrogate
in inferential procedures involving the other series. Knowing whether or not two series have
the same autocovariances may also indicate whether a series is sampled from a faulty or healthy
environment. This paper suggests a new approach to testing for autocovariance equality via sample
arc length (AL) methods. The methods are compared with some of the classical techniques for
the problem. An excellent summary of existing tests is contained in [1].

When the two series are known to be stationary, Coates and Diggle [2] compared the spectral
densities of the series to test for autocovariance equality. These methods rely upon the fact that two
short-memory stationary autocovariance functions are equivalent if and only if the spectral densi-
ties agree at all frequencies (except on a set of Lebesgue measure zero). Kakizawa et al. [3] also
considered spectral methods, handling the multivariate non-Gaussian case via Kullback—-Leibler
and Chernoff information criteria. In this work, the focus was on clustering and discrimination of
multiple series.

*Corresponding author. Email: ftunno@astate.edu

ISSN 0094-9655 print/ISSN 1563-5163 online

© 2012 Taylor & Francis
http://dx.doi.org/10.1080/00949655.2011.595717
http://www.tandfonline.com



Downloaded by [Arkansas State University], [Ferebee Tunno] at 07:53 12 November 2012

1800 F. Tunno et al.

In the time domain (TD), Galeano and Pefia [4] examined differences between the sample
autocorrelations to make equality conclusions. Lund et al. [5] furthered these methods, handling
the multivariate case and devising an asymptotic distribution for a quadratic form of sample
autocovariance differences. A chi-squared limit law for the test statistic is proven from Bartlett’s
asymptotic limit formula [6, Chapter 7]. These tests are simple to use. Quinn [7] fitted high-order
autoregressive (AR) processes to the two series and compared fitted coefficients to assess equality
of series dynamics.

For non-stationary series, Huang et al. [8] used the smooth localized complex exponential
model, which has the ability to extract localized spectral features of the series. Like Kakizawa et
al. [3], Kullback-Leibler distances drive their methods. Choi et al. [9] used wavelet methods to
detect changes in the autocorrelation structure of non-stationary series, examining the changes in
the estimated wavelet-based spectra of adjacent blocks of the series. Corduas and Piccolo [10]
investigated the statistical properties of the AR-based distance between autoregressive integrated
moving average (ARIMA) processes. The distance measures the dissimilarity of two time series
through the corresponding forecasts.

A different approach to the autocovariance equality problem utilizes the sample ALs of the two
series. If one series has a bigger variance, then it should vary more in time and its sample AL
should be larger. A series with positive correlations would not vary much in time and should have
a comparatively smaller sample AL than a series with negative correlations. The proposed AL
test is completely non-parametric in the sense that we do not fit any models to the given series,
but as we show later, an AL-based statistic works for both stationary and certain non-stationary
ARIMA models.

In the next section, AL is described and assumptions and notation are established. Section 3
then presents a formal AL test and quantifies its asymptotic distribution. In Section 4, simulations
are run on ARIMA series. These simulations compare the type I error and power of the AL test to
those of the SD and TD tests of Coates and Diggle [2] and Lund ez al. [5], respectively. Section 5
presents an application, and Section 6 closes the paper with some remarks.

2. AL test

Let {X,} and {Y;} be two time series observed at times r = 1,2, ..., n. The sample ALs of these

n

series are the lengths of the polygonal loci connecting the (¢, X,)!_, and (¢, Y;)!_, sample points:

n n
D VI+ X X2 ) VT+ =Y
=2

1=2

For example, the AL of the process in Figure 1 (left) is 278.8367 units, while the AL of the
process in Figure 1 (right) is 539.104 units.

S¥=V1+ X, —X,—1)? and SY =14+ (Y, —Y,_))2

The sample ALs of {X,} and {Y,} are then )", S and >"/_, S, respectively.
Our main concern lies with zero mean series. Henceforth, we take E(X,) = E(Y,) = 0. We
also assume that {X,} and {Y,} are independent.

2.1. ARMA(p,q) processes

Suppose that {X,} and {Y;} are causal and invertible stationary autoregressive moving average
(ARMA) series. We assume that the innovations governing the ARMA models are zero mean i.i.d.
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Figure 1. The process on the left has an AL of 278.8367 units, while the process on the right has an AL of 539.104
units.

and have a finite fourth moment. Let yx(h) = E(X,X,4;) and yy(h) = E(Y,Y,,1) denote lag h
autocovariances. We wish to test

Hy: yx(h) = yy(h) forallh i
versus Hj : yx(h) # yy(h) for at least one h.

A normalized AL-based statistic for this test is
_ L SF =Y 8D — (= DS — w(Sh)
VT, sF =T, 8

where u(S¥) = E(SX) and u(S)) = E(SY) are the theoretical means of the AL segments of (X}
and {Y;}, respectively. The assumptions imply that {X,} and {Y,} are strictly stationary; hence,
{§X} and {S)} are also strictly stationary. Thus, under the null hypothesis, E(SX) and E(S)) are
equal and constant in ¢ and

T

] ;1=2 SIX - 2;1:2 S’Y
\/Var(z;'zz SX) + Var(3")_, S)

For variances of the sample ALs, the stationarity of {SX} gives

T

)

n-2

Var (Z S,X) = (n—1)ysx(0) + 22(;1 —1—h)ysx(h),

h=1

where the subscript S¥ signifies that {S}} is being considered. We will estimate this variance by
truncating the sum at the greatest integer less than or equal to J/n:

n [I/n]
Var (Z s,") =(n—1)Psx(©0)+2 ) (n—1—h)psx(h).
=2 h=1
This estimator is consistent and avoids the bias associated with large lags when the non-negative
definite autocovariance estimator
1 n—h
Px() = =3 Xy = X)(Xpp — X)

t=1

is used. Berkes et al. [11] discuss this and more general truncation schemes. Analogous expressions
can be derived for Var(}_/_, SY).
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THEOREM 2.1 If{X,} and {Y,} are independent causal and invertible ARMA series whose inno-
vations have a finite fourth moment, then T in Equation (2) converges in distribution (under Hy)
to a standard normal random variable. That is,

7 2 N, 1).

Proof  First, we prove asymptotic normality for the sample AL of {X,}. It is sufficient to verify
Theorem 4.1 from Ho and Hsing [12], which requires their conditions (3.3) and C(¢, 7, A) to hold
(for some 7 and A) when ¢ = 0, 1. We will verify these conditions with 7 = 0 and A = 0.

Let K(x) = +/1 + x2. Then, Ho and Hsing’s [12] functions Ké?&(x) and Ké‘l(),(x) are Ké%(x) —
K (x) and Ké_l(;(x) = |K'(x)| = |x|/+/1 + x2, both of which are well-defined and continuous for
all x. Thus, Part 1 of condition C(t, 7, A) is satisfied for # = 0, 1. The causal ARMA assump-
tion allows us to write X, — X,_| = fo__l a;Z,—;, where ) 2| |a;| < oo. The Cauchy—Schwarz
inequality implies

[o¢] 4 [o¢] 4
E (Z |a,»2,~l> < (Z |a,-1> E(Z§) < oo,
i=l i=1

since for all i, j, k, I, we have E(|Z; Z; Z; Z/]) < E(Z(‘}). This gives

2

7\ o 2
sup E 1+(x+Za,-Z;) <E 1+(|X|+Z|aizi|)

Ic{1.2....) oy o

4
o
<16|1+x*+E (Zla,Z,-]) < 0.

i=l

Thus, Part 2 of condition C(z, 7, A) is satisfied for t = 0. Because |z|/+/1 + z2 < 1 for any z,
4

<1

qup B X + 2 ics @i Zi]
Il 2} \/] + (x+Ziél aiZi)2

and Part 2 of condition C(¢, T, A) is also satisfied for r = 1.
Now let

- 2 . 2 e 2
n= |1+ <Z |aiZl—i|> , &= |1+ (Zaizl—i> , and & = J 1+ (Zaizl—i> .
=] j=1

i—1

Then, |&,| <n, &, = £, and E(n?) < oo. By dominated convergence, E (& — £,)> — 0 as
n — 00. Thus, condition (3.3) in [12] is satisfied.
Theorem 4.1 in [12] now gives

] n n
Ly = 7 (; §F = ;M(S,X)> B N, o?),
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where 0}2( = lim,_, o Var(Ly). An analogous result holds for the {Y;} process. Invoking the
independence of {X,} and {Y;} gives

1 n n
Lx—Ly2 7 (Zs’x _Zsry) 5 N(O, 05 + o).
—2

t=2

The theorem is now proven when Slutsky’s theorem is used with the usual consistent estimate
of 6} +o7. i

To test Equation (1) at significance level «, one rejects Hy when |T'| > z,,, where z,; is the
standard normal critical value with area «/2 to its right. From the assumed invertibility of the
ARMA series, yx(h) = yy(h) for all h > 0 if and only if all ARMA parameters of {X,} and {Y,}
agree. Hence, the above test can also be used to test for equivalent ARMA parameters.

2.2. ARIMA(p,1,q) processes

AL methods are somewhat robust against departures from stationarity. To see this, suppose that
{X,} and {Y,} are independent causal and invertible ARIMA series with ARIMA order d = 1.
Then, {X;} and {Y;} are non-stationary. However, one could still test for equivalent time series
dynamics by noting that ALs depend only on first-order differences of the series, and the first-
order differences are stationary and ARMA. Phrased another way, two ARIMA series can also be
discriminated via Theorem 2.1. Since one can again make the representation

o0
Xi—Xie1 =) aiZ
e

with )2 |a;| < oo, the same proof carries through.

3. Modified AL test

One can ask if AL tests perform the same if the unity term and the square root in +/1 + x2
are ignored. Let VX = (X, — X,_)?> and VY = (¥, — ¥,_)%. Then, Y/, S¥ and Y7, SY are
significantly different if and only if )/, VX and ", V¥ are significantly different. To test
Equation (1), S and S are replaced with V,X and V" in Equation (2). The following theorem
establishes the convergence result of the modified AL test.

THEOREM 3.1 If {X,} and {Y,} are independent causal and invertible ARMA series whose inno-
vations have a finite fourth moment, then T in Equation (2) converges in distribution (under Hy)
to a standard normal random variable when S} and SY are replaced by VX and VY , respectively.
That is,

73 N, D).

Proof Suppose that {X,} is a causal and invertible ARMA series whose innovations are i.i.d. and
have a finite fourth moment. Bartlett’s classical asymptotic normality for sample autocovariances
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[6, Proposition 7.3.3] gives
yx(0) Yx (O)] MX)
5 ~ AN ,— 1,
[Vx(l)] <[Vx(1) n
where for p, g € {0, 1}, the (p, g)th entry of covariance matrix My is

(B=3yx(Pvx@ + Y (vx®yx(k— p+9) + yxk +q)yx(k — p))

k=—00

and E(ZX)* = B(Var(Z}))?. After some algebra, we conclude that

1 & 2 [ . X2 - x2
- yX == X2 — KXo | g =L—n

- - X2 - x?
=2(yx(0) — yx(1)) + ‘—n-—

Wx
~ AN (2()’)((0) —yx (1)), T) ,

where Px(h) =n~' 3" , X, X1, and
Wx = 4((8 = 3)(¥2(0) + y2(1) — yx 0)yx(1)))

+4 ) Brr@) + yxk + Dyx(k — 1) = 2yx O)yx (k + D).

k=—00

We estimate Wy via

Wx = 4((B = 3)P2(0) + p2(1) — Px (0)Px (1))

[¥/n]
+4 3 BRE) + pxtk+ Dixtk — 1) = 2750 px (k + 1.
k=—[Jn]

An analogous result applies to {Y;}. Slutsky’s theorem shows that under H,,

1/ =) (X VX=X,V
VWx/(n = 1)+ Wy/(n — 1)

B N, 1),

since {X,} and {Y;} are independent and Wx and Wy consistently estimate Wy and Wy,

respectively.

Figure 2 plots type I errors and powers for the AL and modified arc length (MAL) tests when
{X;} and {Y;} are drawn from an AR(1) model with varying first-order AR coefficient¢ € (—1, 1).
The two methods perform almost identically. Additional simulations with other ARMA orders
(not shown here) reveal the same behaviour; hence, the MAL method will not be considered
further. This modified test, however, is significant in that it reveals a direct connection between

the AL concept and the autocovariance function.
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Figure 2. Type I error for both AL tests when {X,} and {Y,} follow the same AR(1) process with —1 < ¢x = ¢y < 1
(left). Power for both AL tests when {X,} and {Y;} follow different AR(1) processes with ¢y = 0.6 and 0.4 < ¢y < 0.8
(right).

4. Simulations

4.1. Set-up

This section compares the type I error and power of the AL test, the TD test of Lund et al. [5],
and the SD test of Coates and Diggle [2] for testing Equation (1). For each figure, series of length
1000 were generated and hypotheses were tested at level & = 0.05. Ten thousand independent
simulations were conducted to estimate the type I errors and powers. Below is a brief summary
of the SD and TD tests.

4.2. SD and TD tests

Let fx(-) and fy(-) be the spectral densities for two stationary ARMA series {X,} and {Y,}, where

[e¢] o0

1 —ihw 1 —ihw
fx(w)=5;h=z: e Myx(h) and  fy@) = - 3 ey (h)

—00 h=—00

for frequency w € [0,27) and i = +/—1. Then, yx(h) = yy(h) for all h > 0 if and only if
fx(@) = fr(w) forall w € [0, 2). Since the spectral densities are unknown in practice, they are
estimated by

2 2

Frm st ;e
x(w) = n and  fy(w) = o

n
X e—ita)
E &
t=1

Coates and Diggle [2] noted that if

D, =1In J}(wv) s
Sr(wy)

where w, = 27 v/n, then large values of

n
§ Yre—itw
t=1

n/2

1
- D,
n/2—1uZ=;l |

D
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suggest rejection of equivalent autocovariances. Using a central limit theorem argument, they
noted that since E|D,| = In(4) and Var(|D,|) = n%/3 — (In(4))?, then an a-level test rejects
equivalent autocovariances when

- [72/3 — (In(4))?
D > lﬂ(4) + 2y ——-—;1/2_—1

Since our simulations use o = 0.05 and n = 1000, the SD test in this section rejects equivalent
autocovariances when D > 1.472.

The TD test of Lund et al. [5] is based on a result from Bartlett (see [6, Chapter 7]) which
states that

7(0) y(0)

P(1) y(1)

7O | van||re | W
: ) i

P(L) y(L)

asn — 0o, where Wis an (L + 1) x (L + 1) matrix with (i, j)th entry

Wij=m-=3)y@Oy()+ Z vy k =i+ j)+yk+ jyk—1i)]

k=—00

for 0 <i, j < L.Itis assumed that the series in question is invertible and that E (Zf) =notis
finite. Under a null hypothesis of equal autocovariances,

7x(0) — py (0)

yx(1) =y (1)
y=|@-%Q@ | ~an (0, Z_V!>
. n

Yx (L) — yy(L)

as n — 0o, where py (h) and py (h) estimate lag /& autocovariances of {X,} and {,}, respectively.
It follows that

n - D
(5) VTW IV g Xz+l’

where W is estimated by W. This estimate replaces y (h) with 27! (’}7& (h) — yy(h)) and truncates
the infinite sum with index values between £ n'/?|. Thus, if (n/2) VT W~V exceeds the (1 — o)th
quantile of the 7, | distribution, the null hypothesis is rejected. For the simulations below, L = 10
with critical value x7, ;s = 19.68.

4.3. Error and power

We now summarize the simulation results, where both stationary and non-stationary processes
are considered. In general, the TD test outperforms the AL test in the stationary ARMA case, but
as mentioned above, AL is somewhat robust against non-stationarity.
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4.3.1. Stationary processes

We provide simulations for AR(1), AR(2), MA(1) and MA(2) models. These simulations are
reflective of the general behaviour we expect for stationary ARMA processes. In stationary set-
tings, the TD test is typically the most powerful and outperforms the AL test. However, the AL
test tends to have higher power than the SD test. The type I errors of the TD test are close to the
nominal level (0.05 in our simulations) as long as the AR parameters are not close to stationarity
boundaries, but become inflated for nearly non-stationary processes.

Figure 3 plots results when {X,} and {Y,} follow an MA(2) process. In this case, the AL test
performs better than the SD test and nearly as well as the TD test. However, it is possible for the
TD test to have significantly better power than AL, such as when {X,} and {Y,} are drawn from
MA (1) models, as described in Figure 4.

In Figure 5, {X,} and {Y,} follow an AR(1) process. When ¢ gets close to unity, the type I
errors for both the AL and SD tests remain close to 0.05, while the TD test errors become inflated.
In Figure 6, {X,} and {Y;} follow an AR(2) process. Both the SD and AL tests have a steady
Type I error around 5%, while the TD’s Type I error blows up at ¢x > = ¢y ~ 0.45, which is

10 1004
8- 80|
2
5 ®
2 6 < 60+
- g
g 8
£ 4 404
2 20
04 04
T T T T 4§ T T T T T T
-0.4 -0.2 0.0 0.2 0.4 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
) [}

Figure 3. Type I error when {X,;} and {Y;} follow the same MA(2) process with 6x | =6y, =0.5 and
—0.45 < 0x 2 = fy» < 0.45 (left). Power when {X,} and {Y,} follow different MA(2) processes with fix | =y = 0.5,
Ox2 = —0.25, and —0.45 < 0y < —0.05 (right).

104 1004
. 8+ 80
9

5 g

5 g 60+
> 2
g &

- 40+

204

04 04

T T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 0.4 0.5 0.6 0.7 0.8
0 0

Figure 4. Type I error when {X,} and {Y;} follow the same MA(1) process with —1 < 0y = 6y < 1 (left). Power when
{X/} and {Y;} follow different MA(1) processes with Ox = 0.6 and 0.4 < Oy < 0.8 (right).
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Figure 5. TypeIerror when {X,} and {Y;} follow the same AR(1) process with —1 < ¢x = ¢y < 1 (left). Power when
{X,} and {Y,} follow different AR(1) processes with ¢px = 0.6 and 0.4 < ¢y < 0.8 (right).
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254 80
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Figure 6. Type I error when {X,} and {Y,} follow the same AR(2) process with ¢x 1 = ¢y =0.5 and
—0.45 < ¢px.2 = Py.2 < 0.45 (left). Power when {X,} and (Y, } follow different AR(2) processes with ¢x | = ¢py,} = 0.5,
¢x2 = —0.25, and —0.45 < ¢y 2 < —0.05 (right).

where this AR(2) process approaches non-stationarity. In both Figures 5 and 6, the SD test has
the lowest power.
In Figure 7, the power of the tests is examined when {X,} follows an AR(1) process and {Y;}

follows an MA(1) process. We select 6y = ,/¢% /(1 — ¢%) so that yx(0) = yy(0), but yx(h) #
vy (h) for h > 1. All three tests have poor power when the magnitude of the AR parameter is close
to zero, which is when both processes reduce to white noise.

4.3.2. Non-stationary processes

We have seen that the TD method, which requires stationarity, becomes unstable as we approach
a unit root. Here, we consider non-stationary explosive autoregressions, unit root models, and
ARIMA(p, d, g) models.

In Figure 8, {X,} and {Y,} both follow an ARIMA(1,1,0) process. Since the AL test is robust
against this type of non-stationarity, we see that it performs significantly better than the other two
tests presumably since these tests require stationarity. Both the TD and SD tests have type I errors
significantly larger than 0.05, and yet have lower power for much of the parameter space.
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Figure 8. Type I error when {X,} and {Y,} follow the same ARIMA(1,1,0) process with —1 < ¢x = ¢y < 1 (left).
Power when {X,} and {Y;} follow different ARIMA(1, 1, 0) processes with ¢y = 0.6 and 0.4 < ¢y < 0.8 (right).
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Figure 9. Type I error when {X,} and {Y;} follow the same AR(1) process with 0.98 < ¢x = ¢y < 1.02 (left). Power
when {X,} and {Y;} follow different AR(1) processes with ¢x = 0.98 and 0.98 < ¢y < 1.02 (right).
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In Figure 9, we compare two AR(1) processes that have parameters close to 1. Specifically, the
{X:} process follows the possibly explosive autoregression

Xe=¢xXim1+ 2, t=>1,

where ¢ € [0.98, 1.02] and X = 0. The {Y,} process takes the same form. Once ¢ exceeds unity,
the type I error for all three tests degrades, although the AL test’s type I error decreases to nominal
levels as ¢ moves away from unity. We note that the set of ¢’s for which the AL method provides
a size 0.05 test includes the unit root case. The type I error for the TD and SD methods make
these tests unusable in this situation.

S. An application

In the twenty-first century, the Internet has become an indispensable part of our lives. The two
most popular web browsers are Internet Explorer and Mozilla Firefox, which are owned by
Microsoft and Time Warner, respectively. While IE has been in existence longer than Mozilla
and is used by more people, is it true that their parent companies have stocks that behave
differently?

Figure 10 shows the daily stock prices for these two companies from 17 February 2006 to 17
February 2011, where n = 1260. When the AL test is applied to the two processes at the 5%
significance level, the test statistic is 2.388 > 1.96 = z(o25. Thus, the null hypothesis of equal
autocovariance structures is rejected. Are the two series actually different though?

It is important to note that around the first week of October 2008, the stock market began a
serious decline which lasted for several months. Both Time Warner and Microsoft experienced a
big dip in stock prices which most likely introduced non-stationarity.

When the two series are truncated to contain stock prices from 17 February 2006 to 30 September
2008 (n = 659), the AL test yields a test statistic of 1.789 < 1.96 = zg gs. So, in this case, the
null hypothesis of equal autocovariances is retained. However, when the two series are truncated
to contain stock prices from 1 July 2009' to 17 February 2011 (n = 413), the AL test yields a
test statistic value of 2.980 > 1.96 = z¢ ¢2s. Thus, the null hypothesis of equal autocovariance
structures is rejected.

When ARIMA models are fit to both of the original, untruncated series (using both parameter
parsimony and AIC criteria), Time Warner follows an ARIMA(2, 1, 3) process, while Microsoft
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Figure 10. Daily stock prices for Time Warner (left) and Microsoft (right) from 17 February 2006 to 17 February 2011.
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follows an ARIMA(4, 1, 4) process. The difference in models appears to confirm the conclusion
of different autocovariance structures, and the two additional hypothesis tests for the truncated
series suggest that the change in structures probably occurred sometime after the 2008 dip in
stock prices.

6. Closing remarks

The simulations in Section 4 show the proposed AL test to be a reasonable, albeit imperfect,
one. The AL method is intuitive and performs well for a variety of stationary and non-stationary
processes. Overall, it competes respectably with both the TD and SD methods, although the TD
test is generally more powerful when the data come from a stationary ARMA process.

One way to increase power is to increase the sample size. Figure 11 shows how the AL power
increases as the sample size increases from 1000 to 20,000 for both AR(1) and MA(1) processes,
with a fixed parameter difference of 0.1 in both cases. Specifically, ¢px = 0.6 and ¢y = 0.7, while
0x = 0.6 and 8y = 0.7. The AR(1) power increases more rapidly than the MA(1) power.

The ideas in this paper can also be extended to multivariate settings. If there are m observations
per time unit, that is, X, = (Xy;, Xor, ..., Xp)T and Y, = (Yy;, Yor, - .., Your)T, define

m m
SE= |14+ (X=X and S = |14 (¥ =¥ 0%

j=1 j=1

togetALs ) ) , SX and Y, SY. If {X,} and {Y,} are independent causal and invertible vector
ARMA processes, then testing whether the two autocovariance functions agree involves a test

statistic of the form
n X n Y
Zr:Z St - Zr:z Sr

JVar (T, 89 + Var (S, 7).

The ideas extend as before, regardless of the dimension m. This may be advantageous when m
is very large and explicit vector ARMA modelling becomes problematic due to parsimony issues
involved with large m.
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Figure 11. Power as a function of sample size for both AR(1) and MA(1) processes. For the former, ¢y = 0.6 and
¢y = 0.7, while for the latter, Oy = 0.6 and 0y = 0.7.
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We can also relax the equal sample sizes assumption by examining

(/) YL, S¥ = (1/n2) 372, SY
\/(1/n%)Var( ", SX) + (1/n3) Var (312, SY)

Here n, and n, denote the respective sample sizes of {X,} and {Y,}.
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Note

1. Most economists pegged June 2009 as the end of the recession.
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